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Abstract

Large-sci.le stochastic linear programs can be efficiently solved by using a blend-

ing of classical Benders decomposition and a relatively new technique called impor-

tance sampling. The paper demonstrates how such an approach can be effectively

implemented on a parallel (Hypercube) multicomputer. Numerical results are pre-

sented.
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1. Hypercube Multicomputers

Advances in VLSI (very large-scale integration) for digital circuit design are

leading to much less expensive and much smaller computers. They have also made

it possible to build a variety of "supercomputers" consisting of many small com-

puters combined into an array of concurrent processors. We shall refer to such an

architecture as multicomputers. Each individual processor is called a node. At

this writing, multicomputers with up to 128 nodes are commercially available from

at least half a dozen manufacturers. Typically, the nodes are the same kind as

those used in high-end microcomputers and are relatively inexpensive. Significant

computational power can be obtained by making many of them work in parallel

at costs that are much lower than an equivalent single processor. Obviously, the

effectiveness of the approach depends on whether an application can be reduced to

a well-balanced distribution of asynchronous tasks on the nodes. Linear program-

ming and especially stochastic linear programs solved by decomposition naturally

fit into this framework.

A Hypercube multicomputer is essentially a network of 2" processors intercon-

nected in a binary ri-cube (or hypercube) topology. The connections for n < 4 are

illustrated in Figure 1. Each processor (or node) has its local memory ,,runs

asynchronously of the others. Communication is done by means of messages. A

node can communicate directly with its n neighbors. Messages to more distant

nodes are routed through intermediate nodes. The hypercube topology provides an

efficient balance betwee, the costs of connection and the benefits of direct linkages. or

Usually, a host computer serves as an administrative console and as a gateway to
0

the hypercube for users. 0

For the work reported in this paper, we used an Intel iPSC/2 d6 with 64 nodes

at the Oak Ridge National Laboratory. Each node consists of Intel's 32-bit 803S6 ".
7 Codes

CPU (4 MIPS) couplhd with a 80387 (209 Kflops) numeric ,oprocess(;r for floating jnd/or----

ial9 tII1



point acceleration. It has 4 MBytes of local memory. The hypercube (or Cube)

is accessed via a host (or System Resource Manager) which is also a 80386-based

system with 8 MByte memory and a 140 MByte hard disk. The operating system on

the host is the UNIX System V/386 (Release 3.0). The data transfer rate between

the System Resource Manager and the Cube has a peak value of 2800 KBytes/sec.

Although the nodes are physically connected as the edges of a hypercube, a

trade-marked routing network called DIRECT-CONNECT provides essentially uni-

form communication linkages between all the nodes. The earlier "store and forward"

method used in first-generation hypercubes is replaced by a hardware switching sys-

tem, the Direct-Connect Module (DCR) on each node. Each DCR provides seven

full-duplex channels for internodal communication and one for connection to the

System Resource Manager or I/O devices. The network uses a special algorithm

for messages longer than 100 bytes. It first sends ahead a header message to the

destination node. This header sets gates in each DCR on the intermediate nodes

to clear a data path for the message. Once communication with the destination

node is established with acknowledgment of receipt of the header, the message is

sent through at essentially hardware data transfer rates. The implication of this

improved technology is that computational efficiency is essentially independent of

the problem domain to machine topology mapping. The hypercube can be pro-

grammed as an ensemble of processors with an arbitrary communications network

in which each node can communicate more or less uniformly with all other nodes.

The host machine allows the user to perform the following tasks.

- To edit, compile and link host/node programs.

- To access and release the cube (or a partition thereof).

- To execute the host program.

- To start or kill processes on the cube.

Operations peculiar to the hypercube are controlled either by UNIX-type commands
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(iPSC/2 commands) or by extensions to standard programming languages such as

Foxl,ran and C (iPSC/2 routines). The iPSC/2 commands are used to gain access

to the cube, to load, start or kill cube processes and to relinquish access to the

cube. These commands may be input from a terminal or they may be invoked

using a shell script. The iPSC/2 routines, on the other hand, are mainly used to

manage internodal messages. Nevertheless, it should be noted that almost all of

the tasks that can be performed with iPSC/2 commands can also be accomplished

from within the user programs by iPSC/2 routines with similar names. The iPSr,'?

commands and routines for the Fortran programming environment are documented

in Intel (1988a).

To execute a typic-il parallel program, the following steps are used.

I - Compile and link the host and node programs to create executable mod-

ules.

II - Obtain a partition of the cube (a subcube) of suitable size by invoking the

GETCUBE command. The user has the option of providing a name to

identify this partition. For example, the command

"getcube -c sugar -t d3"

allocates to the user an exclusive subcube named sugar with dimension 3

(i.e. 8 processors) identified by the node numbers 0, 1, 2,..., 7.

III - Run the host program by invoking the name of the executable host mod-

ule. Node programs are loaded on to the appropriate nodes at runtime in

response to calls to the LOAD subroutine in the host program.

IV - On termination, kill all node processess and flush messages by invoking

the KILLCUBE command.

V - Relinquish access to the subcube by the RELCUBE command.

Internodal and host-to-node communication is done by subroutine calls in the cor-

responding programs. The subroutine to send messages is called CSEND. Its argu-
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ments are:

- message type (ID)

- message location (address)

- message length in bytes

- destination node ID

- destination process ID.

The subroutine to receive messages is called CRECV. Its arguments are:

- message type (ID)

- address of buffer for storing message

- length of buffer in bytes.

Both CSEND and CRECV are blocking commands in the sense that the calling

process halts until the message has been transmitted and received, respectively.

Non-blocking versions of these commands are also provided as ISEND and IRECV

respectively. Other features necessary for our purpose are the following functions:

- IPROBE ( ): indicating whether a message of a particular type has been

received;

- MYHOST (): indicating the node ID of the host;

- MCLOCK ( ): returning elapsed times on the nodes and CPU times on

the host; and

- MSGWAIT ( ): blocking the calling process until the outgoing message

has been copied to the operating system buffer.

2. Two-Stage Stochastic Linear Programs

An important class of stochastic models are two-stage stochastic linear pro-

grams with recourse. These models are the analog extensions of deterministic dy-

namic systems which have a staircase structure: x denotes the first, y the second

stage decision variables, A, b represent. the coefficients and right hand sides of the



first stage constraints and D, d represent the second stage constraints, which to-

gether wit.h the transition matrix B, couples the two periods. In the literature D

is often referred to as the technology/recourse matrix. The first stage parameters

are known with certainty. The second stage parameters are random variables w

that assume certain outcomes with certain probabilities p(w). They are known only

by their probability distribution of possible outcomes at time t = 1, where actual

outcomes will be known later at time t = 2. Uncertainty occurs in the transition

matrix B and in the right hand side vector d. The second stage costs f and the

elements of the technology/recourse matrix D are assumed to be known with cer-

tainty. We denote an outcome of the stochastic parameters with w, E € fQ, with Q

being the set of all possible outcomes. The two-stage stochastic linear program can

be written as follows:

min Z = cx + E,(f yw)
sit Ax = b

- B'x + Dy ' =dw
X,y 0, w E Q, p(w) known.

The problem is to find a first stage decision x which is feasible for all scenarios

w E Ql and has the minimum expected costs. Note the adaptive nature of the

problem: While the decision x is made only with the knowledge of the distribution

p(w) of the random parameters, the second stage decision y' is made later after an

outcome w is observed. The second stage decision compensates for and adaptes to

different scenarios w.

Two-stage stochastic linear programs have been studied extensively in the lit-

erature since Dantzig (1955), for example Birge (1985), Ermoliev (1983), Frauen-

dorfer (1988), Higle and Sen (1989), Kall (1979), Pereira et al. (1989), Rockafellar

and Wets (1989), Ruszczynski (1986), Wets (1984) and others contributed in this

area (Ermoliev and Wets (1988)). Parallel decomposition for deterministic linear

programs are reported e.g. in Entriken (1989), Ho and Gnanendran (1989) and

Ho, Lee and Sundarraj (19??). Examples of using parallel processing for solving
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stochastic programs are Ariyawansa and Hudson (1990), Hiller and Eckstein (1990),

Vladimirou and Mulvey (1990), Wets (1985), and Zenios (1990).

The difficulty of solving large-scale stochastic problems arises from the need

to compute multiple integrals or multiple sums. The expected value of the second

stage costs, e.g. for given first stage decision variables i, z = E(f yw) = E(C)

is an expectation of functions C(vw),w E 0, where C(vw) is obtained by solving

a linear programming problem. V is a h-dimensional random vector parameter,

e.g. V = (V,..., Vh), with outcomes vw = (vi,... ,vh)d. Clearly, V is composed

of the random elements of the transition matrix B and the random elements of

right hand side d. For example V represents the percent of generators of type i

down for repair or transmission lines not operating and vt' the observed random

percent outcome, or Vi represents an uncertain electricity demand in demand region

i and vi the observed demand realization. We also will denote the vector v' by

v. The corresponding probability is denoted by p(vw) sometimes p(v) or p-. We

assume independence of the stochastic parameters 9l. The set of all possible random

events, is constructed by crossing the sets of outcomes Qi,i = 1,...,h as Q =

Q1 x Q2 X... x Qh. The expectation E C(V) takes on the form of a multiple integral

E C(V) = f... ( C(v)p(v)dv ... dvh, or, in case of discrete distributions, the form

of a multiple sum E C(V) = E,,, " - - C(v)p(v), where p(v) = pi(vl)...ph(vh).

In the following discussion we concentrate on discrete distributions. In this case

Q takes on K values. For relevant practical problems, K can get very large and

easily out of hand. Consider, for instance, the number of stochastic parameters h

being as small as 20 and Q,, the set of possible outcomes of parameter i containing

K, = 5 possible outcomes each. Each term requires a function evaluation which

can be computationally expensive since its value is obtained as the optimal solution

of a linear program. The number of terms in the multiple sum computation, K =

20 - 1014. It is clear that the problcm Is ao longer practical to b, ..ved by direct
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summation.

Using discrete distributions, one can express a stochastic problem as a deter-

ministically equivalent linear program by writing down the second stage constraints

for each scenario w E Q? one below the other. The objective function carries out the

expected value computation by direct summation. Clearly, this formulation leads

to linear programs of enormous sizes.

ininZ= cx+p'fy+ p2f y 2 +. + phf yl
s/It Ax = b

-B'x + Dyl = d
-B 2 x + Dy2  = d

--Bh'x -+- Dy K = d
1 2 K' 0

The method which we apply to solve large-scale stochastic linear programs uses

Benders decomposition and importance sampling. The method and the underlying

theory of our approach is developed in Dantzig and Glynn (1990) and Infanger

(1990, 1991). Dantzig and Infanger (1991) report on the solution of large-scale

problems. Entriken and Infanger (1990) discuss how reliability constraints can be

hai,dcled by additionally using Dantzig-Wolfe decomposition. In the following we

give a brief review of the concept. Using decomposition techniques we split the

problcrr into a series of tractable smaller problems. Using sampling techniques we

compute an estimate of the expected costs and variances. Importance sampling is

the key to obtaining accurate estimates, i.e. unbiased estimates with low variances.

with low sample size.

3. Benders Decomposition

We decompose the two stage stochastic linear program using Benders (1962)

dual decomposition. According to Van Slyke and Wets (1961) we express the sum of

second stage costs by a scalar 0 and replace the second stage conditions scqucntially

by " cuts", which are necessary conditions expressed only in terms of the first stage
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decision variables x and 0. The probleni then decomposes into a master problem

and into independent subproblems, one for each w E Q. The latter are used to

generate the cuts, unbiased estimates, and variances.

The master problem:

mnZM = cX + 6
s/t Ax b
cuts: G'x + a tO > g', I = ... ,L

x, 9> 0,

where -cuts", are initially absent and are added one each iteration. On iteration I

the master problem is optimized to obtain an approximate optimal feasible solution

x = i.l (using only the 1 cuts generated so far) which is passed as input to the

subproblems. The value of the scalar 0 gives an approximation to the expected

subproblems costs and zM = cil + 9 gives a lower bound estimate of min Z.

The sub problems:

The solution il of the master problem of iteration I is sent as input to each

subproblem w which is then solved to obtain the optimal costs of the second stage

problem: namely, for each scenario w E Q for given i., the following subproblem is

solved:
nin z' fy
s/t 7r : Dy'= d' + B x

y' > 0, E Q, e.g.?={1,2. .K

z' = z'(.') is the optimal objective function value as a function of i t . The dual

multipliers r" = 7r(.i) corresponding to the constraints in scenario W, are then

used to generate the next cut I to augment the set of 1 - 1 cuts found so far for the

master problem.

The cuts (definition of G, g, 7r for c'ut 1):

G = E (7r'B), q=E (7r'd'), 7r W= 7r(,il)
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Note that if a subproblem is infeasible a different definition of the cut is used. a = 0

corresponds to feasibility cuts and a' = 1 corresponds to optimality cuts.

The expected value of the second stage costs:

z ) = E (zw(il))

Lower LBL and upper UBL bounds to the problem: UB = oo,

LBL = zL , UBL = min{UBL- l,c il + z(il)

The optimum objective function value zl of the master problein in iteiation 1,

provides a lower bound of the objective function value of the optimum solution of

the problem which monotonically increases with 1. The expected costs cx 1 + z(.i)

associated with a trial solution il, provide an upper bound to the optimal costs of

the problem. These upper bounds, however, do not monotonically decrease with 1.

hence we recursively redefine the best solution as the one associated with the lowest

upper bound obtained so far.

Computing these expectations exactly can be in practice an impossible task.

Solving all subproblems w E Q once they are seeded with a trial solution .i from

the master problem means total evaluation for all w and these can be too many.

Instead we use a specialized Monte Carlo sampling technique to select a sample

of subproblems w, w E S, to compute estimates of the second stage costs z and

estimates of the gradients G' and right hand sides g' of the cuts. Using estimates

for the gradient and the right hand side of the cuts, and estimates of the second

stage costs we obtain estimates of th , lower and upper bounds to the problem.

These lower and upper bound estimates are viewed as sample means drawn from a

population of i.i.d. random terms. If the sample size is forty or more the sample

means for all practical purposes can be assumed to be normally distributed. The

estimation process also provides estimates of the variances of these sample means.
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A 95% confidence interval for the objective of the obtained optimal solution is

computed. A Student-t test is used to test whether the lower and upper bounds of

the objective are sufficiently close. If yes, the problem is considered solved and the

iterative process terminated.

4. Importance Sampling

Monte Carlo Methods is the way recommended by numerical analysts to com-

pute multiple integrals or multiple sums of functions of v where v is a point in a

higher dimensional space h, say h > 4, (Davis and Rabinowitz (1984)). Suppose

C' = C(vw) are independent random variates of v" , w = 1,..., n with expectation

z, where n is the sample size. An unbiased estimator of z is

i = (1/n) C

W= 1

with variance a 2 = a 2 /n, a2 = var(C(V)). Note that the standard error decreases

with n- 0 .5 and the convergence rate of z to z is independent of the dimension of

the sample space h. Note also the inherent parallelism of the approach. C", are

random variates obtained by solving a linear program. The computation of CW

can be carried out in parallel. Different sample problems are assigned to different

processors and solved concurrently. As the computation of C" is the computation-

ally most expensive part in the Monte Carlo scheme, the parallel impementation

can be anticipated to be highly efficient, an anticipation which is borne out by the

experimental results to be presented later.

Importance sampling is a variance reduction technique often applied in sim-

ulation models (Glynn and Iglehart (1989)). We rewrite z = E-01 C(vw)P(vw)

as
C(v')p(v')q(v')

,EO q( vw )

11



by introducing a new probability mass function q(v') and we obtain a new estimator

for z,
1 C(vw)p(vw)

W~=1 qv)
by sampling from the distribution q(vw). The variance of i is given by

var(i) \ q(C(vw) .Z) - ) q(vw).

Chosinq'(v" = Cqvvp~vw

¢I ( C(vw')P(v") would lead to var(i) = 0, which means one couldChosng *(v )  =)--., c(v')P(,*,)

get a perfect estimate of the multiple sum from a sample size n = 1. However, this is

a useless result since to compute q(vw) we would need to know z = -,;c Cwp(vw),

which is what we wanted to compute in the first place. Nevertheless, this suggests

the following heuristic for choosing q. It should be proportional to the product

C(vw)p(v") and should be of such a form that it can be integrated easily. Thus

a function r(vw) ; C(vw) is sought, which can be integrated with less effort than

C(vw). Additive and multiplicative (in the components of the stochastic vector v)

approximation functions and combinations of these are candidate approximation

functions. In particular, we have been getting good results using as our approxi-

mation to C(v) a function of the form EhI Ci(V) where Ci(vi) is (in general) a

non-linear function of a scalar variable vi . We compute q as

q(v' ) , h C(VW)p(vw)

EZzl WEfl, C,(vw)
To understand the motivation for the importance sampling scheme, assume for

convenience Ci(v") > 0 and let F(v") =- I =1 Ci(v"). If , C(v')p(v') were used

as an approximation of i it can be written

n h n

EZ(v)p(vw) = i E P(''P(2' . hV"
=1 =1 w=1 I

where w = (w, W2 ,.. .,wh) and where we define

ai = S~
=j Ci(V~i )pi(o ),
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which is relatively easy to compute since it can be evaluated by summing only one

of the dimensions of w. Note that

= >_ 0, w E R01i

may be viewed as a modified probability distribution of vi associated with the i

term. It is, of course, a trivial matter to directly sum each term i since each of

its factors, being independent probability distributions, sum to one. Suppose, how-

ever, one does not notice this fact and decides to estimate the sum by estimating

each of the h terms by Monte Carlo sampling. The i-th term would then be evalu-

ated by randomly sampling vi from the distribution pi(v") and all the rest of the

components vj of v from the distributions pi(v").

In an analogous manner, we let

_() C(wO)
p~)-r(w)

and write

= Cpw)p(w) = p(wj)r(w)p(wo)

h n

= ~ ~ ~ i Ic~ Zpw[PtI(V'i)P 2 v2)..Ph(V~h)
i~l w1l

If our approximation F(w) to C(w) is any good, p(w) will be roughly 1 for almost

all w. This suggests the heuristic that the sampling be carried out differ- itly for

each term i. The importance sampling scheme then is to sample vi of the i-th term

according to the distribution 5i(v") and to sample all other components vWj of the

i-th term according to the distribution pi(v ')

If the additive function turns out to be a bad approximation of the cost func-

tion, as indicated by the observed variance being too high, it is easily corrected by

increasing the size of the sample.
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Actually we use a variant of the additive approximatio. function. By introduc-

ing C(r), the costs of a base case, we make the model more sensitive to the impact

of the stochastic parameters v. Our approximation function is computed as follows:
h

r(V) = C(T) + r,(v), r,(v,) = C(1i,... TO - C(7)

We refer to this as a marginal cost approximation. We explore the cost function

at the margins, e.g. we vary the random elements vi to compute the costs for all

outcomes v, while we fix the other random elements at the level of the base case. r

can be any arbitrary chosen point of the set of ki discrete values of vi, i = 1,..., h.

For example we choose ri as that outcome of Vi which leads to the lowest costs,

ceteris paribus.

Summarizing, the importance sampling scheme has two phases: the preparation

phase and the sample phase. In the preparation phase we explore the cost function

C(V) at the margins to compute the additive approximation function F(V). For
this process nprep = 1 + r - 1) subproblems have to be solved. Using F(V)

we compute the approximate importance density

q(v" ) = + hr(vw)p(vw)

= C(T + i=1 ZEE, 1',(vw)p(vw)
Next we sample n scenarios from the importance density and, in the sample phase,

solve n linear programs to compute the estimation of 2 using the Monte Carlo

estimator. We compute the gradient G and the right hand side g of the cut using

the same sample points at hand from the expected cost calculation. See Infanger

(1990, 1991) for the computation of the cuts and details of the estimation process.

The function evaluations in the preparation phase and the sample phase are "made

to order" for parallel processing.

5. The parallel algorithm

The Hypercube computer has the architecture of losely coupled multiproces-

sors. The nodes of the cube are independent processors, where each processor has

14



its own operating system and its own memory. The nodes are connected via a

communication network. Information is exchanged between nodes only by sending

messages. The hypercube architecture defines which nodes are directly connected

and which nodes are only indirectly connected via third nodes. Message routing

systems of modern Hypercube computers, like .e Intel iPSC/2 computer that we

are using, ensure that communication between indirectly connected nodes is very

fast. Thus the difference in the communication time between directly and indirectly

connected nodes is neglectable. However, the time spent for communication can be

significant, if much information is exchanged between nodes. Therefore the design of

a parallel algorithm for losely connected multiprocessors should be laid out in such

a way that only minimum amounts of information have to be exchanged between

nodes.

The main work is in the repeated solving of the master problem, and the

subproblems in the preparatory phase and in the sample phase. All other tasks are

comparably unimportant with respect to computing time. We assign processor 0

to be the master processor. Besides its main task of solving the master problem,

the master processor also controls the computation and synchronizes the algorithm.

The other processors (1 - 63) were assigned to be subprocessors, with the main task

of solving subproblems. This design requires communication between the master

processor and the sub processors. No information needs to be exchanged between

different sub-processors.

In addition there is a host processor which has access to data storage devices

and manages data input and output. The execution of the parallel program follows

the following general steps: The host processor loads the host module (the exe-

cutable file for the host processor) into its memory and starts the execution. Next

the executable files for the master processor and the sub processors are loaded into

the host and then sent to the master processor and the sub processors respectively.
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The master processor and the sub processors after they receive their modules start

execution. After processing the input data and sending it to master and subs, the

host remains inactive and waits until it receives the optimal solution from the mas-

ter processsor. During this time the algorithm is performed entirely in the cube

and the master processor controls the execution of the program. After receiving

the optimal solution, the host processor outputs the solution to the disk, stops the

execution of the programs of the master and sub processors, and releases the cube,

terminating the parallel program.

The problem data includes the problem specification of the master and the sub,

the stochastic information and control parameters for the execution of the program.

The input data for specifying the master problem and the sub problem are given in

the form of an MPS file. Internally the problems are stored in the form of the data

structures used by the linear programming solver, which we use as a subroutine. We

adapted LPM1 (Tomlin 1973), a linear programming optimizer, for our purposes.

Clearly, the master processor only receives the data for the master problem and the

sub processors only get the data for the subproblem. Thus no switching between

different problems is necessary, as it would be in a serial implementation. Both

master and subprocessor receive the complete stochastic information. The stochas-

tic data include the identification of the stochastic parameters within the problem

and their distributions.

An index vector v"' = (Vi, vh)" completely defines a scenario w. We define

vi E Qj or vi = 1,...,ki, i = 1,...,h. For example v' = (1,3,2) would denote

a scenario given by the first outcome of random parameter 1 the third outcome of

random parameter 2 and the second outcome of random parameter 3. Thus only

the index vector v" is transmitted from the master processor to a sub processor

to identify the scenario subproblem to be to be solved. For example for h = 20

and a 4 byte integer representation 80 bytes have tc be sent. Besides the scenario
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information v' the current solution of the master problem, i, is needed to set-up

the scenario problem w. We only pass il to each subprocessor j once per iteration at

the beginning of the preperation phase. The flag I, E {0, 1} tells the subprocessor

if an i has to be received (1) or not (0).

Now subprocessor j looks up the outcomes of the stochastic parameters corre-

sponding to v to set up the the vector b(v) and the matrix B(v). Using i the right

hand side b(v) + B(v)i is computed and the sub-problem is solved.

In any case the optimal objective function value z(v) has to be sent to the

master processor. Dual information for the coefficients G and the right hand side g

of the cut is all that is needed from the base case scenario and all sample scenarios.

In this case we compute the products G(v) = B(v)r(v) and g(v) = b(v)7r(v) and

send the result to the master processor. The flag I, tells the subprocessor if the

computation and the sending of G(v) and g(v) is requested if (1), or not if (0).

In our design the subprocessors do not have any information of the status of the

algorithm. The subprocessors set-up and solve the subproblems and post-process

the solution. The computation is controlled by the master processor through the

flags I. and 1,.

The master processor runs the entire algorithm except obtaining solutions of

subproblems. An important task concerns the controlling of the assignment of sub-

problems w to subprocessors j in the case where more sample subproblems have

to be solved per iteration than there are subprocessors available. Assigning sub-

problems in equal proportions to subprocessors is not always possible for all sample

sizes nor is it most efficient. Different subproblems need different amounts of time

for getting solved. The solution time mainly depends on how many columns of the

starting basis (from which the solving procedure is started) differs from the optimal

basis of the subproblem. Clearly, it makes sense and is convenient to use as start-

ing basis the optimal basis of the subproblem which was last solved on the same
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processor.

We implemented an algorithm to adaptively balance the work load of the sub-

processors. In our scheme the master processor keeps track if a subprocessor j is

busy or idle. At the beginning of each solviiig phase (preparatory and sample phase)

all subprocessors are idle. The master processor initiates a subprocessor working by

sending the first message (I., I,) to it. At this time the subprocessor is set to busy.

It is set to idle again when it's solution has arrived at the master processor. Given a

queue of subproblems to be solved, the first subproblem in the queue is assigned to

the next idle subprocessor. The master processor keeps switching between sending

out problems and receiving solutions until all subproblems are solved. Of course

the mapping w --+ j is not unique because different subprobiems w are solved by one

subprocessor j. However, because we only send a new problem after the solution

of the previous problem has been received, the solution of a subproblem w can be

identified as uniquely coming from subprocessor j.

We can now summarize and state the algorithm. Step 2 is computationally the

most expensive part and is the part computed by using parallel processors.

The Algorithm

Host processor

Step H: 0.0 Load host executable modul from disk.
Step H: 0.1 Load master modul from disk.

Send master module to processor 0.
Load sub module from disk
Send sub module to processors j, j = 1,..., J.

Step H: 0.2 Read data and from disk.
Send control data and stochastic data to processors j, j - 0,..., J.
Send master problem data to processor 0.
Send sub problem data to processors jj = 1,..., J.

Step H: 6 Receive optimal solution.
Write solution report.

Kill cube. Stop.
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Master Processor
Step M: 0 Receive master module from host processor.

Receive control and stochastic data from host processor.
Receive master problem data from host processor.
Initialize: 1 = 0, UB ° = 00.

Step M: 1 Solve the relaxed master problem.
Obtain a trial solution i and a lower bound LB.

Step M: 2.0 1=I+1.
Step M: 2.1 Determine preparatory scenarios v = (vj,... vh)w,w = 1,.... nprep
Step M: 2.2 w = 1,...,nprep:

Determine w -j.
Send I j , Ic to subprocessor j.
Send ;l to subprocessor j.
Send v- to subprocessor j.
W = l,...,flprep :

Receive z' from subprocessor j.
If 1, = 1: Receive G", g" from subprocessor j.

Step M: 2.3 Compute the importance distribution.
Step M: 2.4 Sample scenarios v- = (v 1 ,... Vh) = 1,...,n from the importance

distribution.
Step M: 2.5 w=1,...,n:

Determine w --

Send I, I, to subprocessor y.
Send vw to subprocessor j.

i = f,...,nr
Receive zw from subprocessor .
Receive GL , 9w from subprocessor j

Step M:2.6 Obtain estimates of the expected second stage cost, the coefficients and
the right hand side of the cut. Add the cut to the master problem. Obtain
an upper bound UB'.

Step M: 3 Solve the master problem.
Obtain a tri4.l solution ;i and a lower bound LB'.

Step M:4 s=UB'-LB'+TOL

If s > 0 (Student-t test) go to Step 2.
Step M: 5 Obtain a solution and compute confidence interval.
Step M: 6 Send optimal solution to host processor.

Sub Processor j:
Step S: 0 Receive sub module from host processor.

Receive control and stochastic data from host processor.
Receive sub problem data from host processor.

Step S: 2.1 Receive I., Ic trom the master processor.
If I -= 1: Receive i from the master processor.
Receive v from the master processor.
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Step S: 2.2 Compute B(v), b(v) and the right hand side b(v) + B(v)i.
Step S: 2.3 Solve scenario subproblem v.
Step S: 2.4 Send z(v) to the master processor.
Step S: 2.5 If I, = 1:

Compute G(v) = 7r(v)B(v), g(v) = 7r(v)b(v).
Send G(v), g(v) to the master processor.

Step S: 2.6 Go to Step S: 2.1

6. Performance Measures

Parallel processing main purpose is to speed up computing time relative to

conventional sequentional computation. In the case when large sample sizes are

necessary in order to obtain good approximate solutions to stochastic linear pro-

grams, parallel processing is an important part of the solution technique, because

the solution times on sequential computers may exceed time limits for practically

solving the problem.

Assuming that a number p of processors are available and allocated to solve

the problem at hand, we compare the parallel time utilizing p processors to the

sequential time using only 1 processor. We define the parallel time tp the duration

from start to finish of the solution process in the parallel implementation. In terms

of CPU times tp covers the disjoint union (nonoverlapping total) of CPU times

of all processors. We define the sequential tme t, the sum of all CPU times of all

processors. The sequential time t, differs from a sequential time obtained by actualy

solving the problem on one processor. This would require a different implementation

and would not be directly comparable. In a serial version no messages are sent. On

the other hand computing resources are needed for alternately switching between

solving the master problem and the subproblems.

The speedup S in using p processors instead of one is given by S = The
tp

efficiency is defined by E = sx 100%.

A simple set of algebraic formulae can be used to predict the sequential time t,

and the parallel time tp. We denote tA1,1 the mean duration to compute the tasks
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assigned to the master processor per iteration. We define tSUB the mean duration

to compute the tasks assigned to a subprocessor (mainly solviag one subproblem)

when starting from the optimal solution of the previously solved subproblem and

tSUB the mean duration if solving a subproblem from scratch. Thus with L being

the number of iterations,

t, = tMA + tSUB + (nprep + n) tsuB

and

tP tMA + tSUB + np-,p tsUB, if n, nprep - 1;

L tMA + tSUB +t _l SUB, if n > p- rn  <p-i.

If the sample size n is smaller than the number of sub-processors the parallel al-

gorithm is not efficient because not all computer recources are utilized. Using the

above formulae, we can compute the efficiency e.g. for the case of n, nprep > p - 1

as

E tMA + tSUB + (nprep + n)tSUB
P t MA + P tSUB + "P-I (nprp + n)tSUB"

One can see for a fixed number of processors the efficiency approaches 100% as

sample size increases. This is obvious because increasing the sample size means

adding computational work which can be conducted in parallel. Thus the parallel

implementation is most efficient when solving problems which require large sample

sizes. On the other hand one can also see that for a given sample size the effi-

ciency decreases with increasing number of processors. The maximum number of

processors which can be utilized meaningfully is 1 + max {nprep, n}.

7. Numerical Results

Experiments were conducted to validate the parallel implementation and to

obtain measures of computing time, speedup and efficiency. Test problems taken

from the literature are usually small with a small number of stochastic parameters.
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In order to test our methodology on truly large-scale problems we build two classes

of models based on practical planning models in electric power and financial in-

vestment. Numerical results using the serial implementation of the algorithm are

reported in Infanger (1991) and Dantzig and Infanger (1991). Here we report on

the performance of the parallel algorithm on one of these large-scale test problems.

All experiments were performed on he large-scale test problem BIGNEW

which is a modified version of the capacity expansion planning model WRPM, a de-

scription of which can be found in Dantzig et al. (1989). It is a multi-area capacity

expansion planning problem for western USA from Canada to Mexican border. The

model is quite detailed and covers 6 regions, 3 demand blocks, 2 seasons, and several

kinds of generation and transmission technologies. The objective is to determine

optimum discounted least cost levels of generation and transmission facilities for

each region of the system. The model minimizes the total discounted costs of sup-

plying electricity (investment and operating costs) to meet the exogeno,,sly given

demand subject to expansion and operating constraints.

In the stochastic version of the m-clel the availabilities of generators, trans-

mission lines, and demands are subject to uncertainty. There are 11 stochastic

parameters (8 stochastic availabilities of generators and transmission lines and 3

uncertain demands) with discrete distributions with 3 or 4 outcomes. While other

implementations of WRPM cover up to 3 future time periods, BIGNEW covers a

planning horizon of only one future time period and is formulated as a two-stage

stochastic linear program with recourse. The problem is large-scale but is by far

not the largest we have solved serially. The number of universe scenarios is about

106; the equivalent deterministic formulation of the problem (if it were possible to

state it explicitely) would have more than 0.3 billion constraints.

This test problem has been solved re)eatedly using different inumbers of pro-

cessors and different sample sizes. The Iarallel implementation has been improved
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as we learned more about its characteristics. For example in our first implementa-

tion, tables of indices v",w = 1,..., nprep and v',w = 1,... ,n were sent to each

sub processor and the sub processors extraced the v w from the table when solviDg

subproblem w. In this case the table lookups are done in parallel. However, it re-

quites considerable communication. When sending tables of indices to all procesors

the message length in byte is nprep or n times larger than an alternative procedure

which sends only v ' to the corresponding sub processor. Table 1 gives a compari-

son of computing time of sending tables versus only index arrays. E.g. a table has

3.8 kBytes versus an index array has only 60 Bytes. At this stage the mapping of

subproblems to processors w - j was hardwired. Thus the number of subproblems

to be solved in each iteration (number of preparatory subproblems and sample size)

was limited by the number of processors at hand for the computation. The compar-

ison of the two implementation shows differences in the CPU time which increase

appioximately linearly with the sample size. The differences are small, however.

compared to the total CPU time. The comparison shows that communications to

the extent required by this algorithm do not influence the performance significantly.

However, it is clear that extensive communication on some problems could increase

the computing time significantly.

Next we varied the sample size between the range of 20 and 63, where we always

have at least as many processors at hand as subproblems have to be solved in one

parallel phase. Table 2 represents the results. The computing time (measured in

CPU rininutes per iteration) is approximately constant at a level of 0.12 minutes per

iteration fore sample size 20 up to 29. Then it jumps to a level of approximately

0.17 min per iteration where it again remains approximately constant.

In the test example the number of preparatory subproblems to compute the

importance distribution is 29. Figure 2 shows how the algorithm parallelizes to

indicate the efficiency of the parallel algorithm. The figure shows schematically

23



busy and idle times for different processors in case of sample size 63 during the

first two iterations. Note the two phases of solving subproblems the preparatory

phase and the sample phase. While in the preparatory phase only 29 subproblems

have to be solved compared with having to solve 63 subproblems in the sample

phase. Each optimization is started using the basis of the optimal solution of the

problem previously solved on the same processor. At the beginning, all problems

are started from scratch as no basis is available. In the first iteration processors 1

to 29 start from scratch in the preparatory phase but use the optimal bases from

the preparatory subproblems in the sample phase. Processors 30 to 63 do not solve

subproblems in the preparatory phase, thus the sample sub-problems assigned to

these processors are started from scratch.

Solving a subproblem from scratch takes considerably more time than solving

it with a good starting basis (warm start). The master processor starts operation

when all necessary subproblems are solved completely, both in the preparatory

phase and the sampling phase. The computing time in each phase is determined

by the maximum duration spent for soiving a subproblem. In the first iteration

processors 30 to 63 are idle during the preparation phase and solve subproblems

from scratch in the sample phase; the maximum time spent in the sample phase by

these processors is much larger than the maximum time spent by processors 1 to

29. The duration of the sample phase in the first iteration is therfore much larger

in the case of sample sizes larger th-in 29. the number of Dreparatory subproblems.

The jump in the computing time at sample size 30 is due to this effect.

Besides the impact of the starting basis in tie first iteration, there is also an

impact in all other iterations. A basis of the optimal solution of a subproblem of the

current iteration is expected to be a better starting basis than a basis of the optimal

solution of a subproblem of the previous iteration. Note that the effect only occurs

if npr p _ p - 1 and T1 > n ,-c,. We overcome this effect by supplying a proper
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basis to subprocessors 30 to 63. In general one could copy the optimal basis of the

subproblem which has finished first in the preparatory phase to processors 30 to 63

to warm start all subs in the sample phase. As idle processsors are not used for

any other tasks and cannot be used in a timesharing mode by other users it is more

efficient (as no communication is necessary) to assign a preparatory subproblem

(e.g. subproblem 1) also to processors 30 to 63 and solve it to have the optimum

starting basis ready for the sampling phase. Table 2 also shows the results for

warm starting all subs. The computing time remains approximately constant over

the whole range of sample sizes. The results show that the effect is completely

compensated. When using the warm start feature no time differences resulting

from nprp < n can be observed. Thus the model for determining the parallel time

tP is valid for all numbers of preparatory problems nprep.

The analysis so far has concerned previous implementations where the assign-

ment of subproblems to subprocessors was hardwired. In our current implemen-

tation sub problems are sent to the next idle node. This implementation allows

for any size of subproblems nprep and n per iteration and divides up the number

of subproblems efficiently to the number of prncessors available. If necessary the

warm start procedure is used. In the following we are interested in the efficiency of

the method both with respect to the sample size and with respect to the number

of processors.

For determining the efficiency we use the formulae developed in the previous

section 6. Varying the sample size over a sufficiently large range, we estimate the

parailicters for determining the computing time. Table 3 gives the results for sample

sizes from 100 to 600 using 64 processors representing the parallel computation time

versus the sample size for both the actual time measurements and the estimates from

the formulae. One can see that the algebraic formulae give an excellent estimate

of the actual parallel computing time. We estimate the parameters tMA + t SUB
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to be 0.0962 and tSUB to be 0.0149. Using these parameters we compute the

corresponding serial time t8, the speedup S and the efficiency E, which are also

reported in Table 3. While the efficiency is low for small sample sizes it rapidly

improves with increasing sample size. In the case of sample size 600, we obtain a

speedup of about 37.5 which means using 64 processors we reduce the computation

time by a factor of 37.5. The total parallel time is 17.3 minutes while in a serial

implementation the time to solve the problem would be 652 minutes. Figure 3

shows the dependency of the efficiency upon the sample size when 64 processors are

used.

Using estimates based on the formulae for the parallel time, we compute the

efficiency as a function of the number of parallel processors used. Figure 4 gives a

graphical representation. For small numbers of processors the effect of only p - 1

processors operating in parallel when using p processors dominates the result. For

example when using 2 processors we switch between the master processor and only

one sub processor. There is no parallel overlapping in the computation. In this case

we perform a serial computation distributed to 2 processors. The efficiency hence

is 50%. The efficiency increases until the above mentioned effect is not dominating

anymore. E.g. for sample size 600 and using 12 processors, the efficiency is about

82%. The efficiency decreases with increasing numbers of processors beyond 12.

Using 64 processors, we obtain an efficiency of 58.54% when sample size is 600.

Corresponding to the runs documented in Table 3, Table 4 reports on the op-

timum objective function value and the 95% confidence interval. The lower bound

distributions have less variance than the upper bound distributions, hence the con-

fidence interval is asymmetric. Using a sample size of 100 (out of about 1 million

universe scenarios) we obtain an optimal solution of 188348.7 with a 95% confidence

intervall of 0.08% on the lower side and 0.018% on the upper side. Even with only

small sample sizes we obtain amazingly accurate results. The parallel time to run
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the problem was 8.3 minutes on the Hypercube multicomputer.

The optimal objective function value remains stable when increasing the sample

size. That again shows that we obtained good estimates. The confidence interval

decreases with increasing sample size and the rate of n - °' 5 is verified by the com-

putational results.

Using a sample size of 600 we obtain an optimal objective function value of

188351.8 with a 95% confidence interval of 0.04% on the left side and of 0.06%

on the right side. Thus the optimal solution lies with 95% confidence within

188276.7 > * > 188473.0. All solutions reported in Table 4 fall within this range.

The computation time on the Hypercube multicomputer was 17.3 minutes. It is

interesting to note that during the process of solving the problem about 43400 sub-

problems of the size of 289 rows and 302 columns each and 69 master problems were

solved.
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Table 1: Communication time

CPU CPU
(min) (min)

nodes sending sending
reserved p n iter tables indices diff obj

32 32 20 66 7.916 7.898 0.018 188482
32 32 30 64 11.236 11.173 0.063 188271
64 51 50 63 11.118 11.034 0.084 188378

64 51 60 70 12.167 12.035 0.132 188549

Table 2: Warm start all subs

with no with a

warm start warm start

nodes CPU CPU
reserved p n iter (min) time/it (min) time/it obj

32 32 20 66 7.898 0.120 7.898 0.120 188382

32 32 24 63 7.502 0.119 7.502 0119 188025
32 32 26 61 7.866 0.129 7.866 0.129 188236
32 32 27 56 6.219 0.111 6.319 0.111 188232

32 32 28 52 6.434 0.124 6.434 0.124 188195
32 32 29 60 7.303 0.122 7.303 0.122 188492
32 32 30 64 11.173 0.175 7.770 0.121 188271

32 32 31 60 10.767 0.179 7.331 0.122 188301

64 33 32 64 12.409 0.194 N/A N/A 188347
64 36 35 59 10.334 0.175 N/A N/A 188295

64 41 40 63 10.898 0.173 7.516 0.119 188261

64 51 50 63 11.034 0.175 7.528 0.119 188378
64 61 60 70 12.035 0.172 8.374 0.120 188549
64 64 63 75 12.645 0.169 8.821 0.118 188492
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Table 3: Speedup and Efficiency

n iter tp tp t, S E

est. by
actual formula speedup efficiency

100 63 0.132 0.135 2.024 14.99 23.456
200 72 0.159 0.159 3.519 22.13 34.674
300 76 0.182 0.182 5.014 27.55 42.973
400 84 0.213 0.206 6.508 31.59 49.360
500 69 0.229 0.230 8.003 34.80 54.428
600 69 0.250 0.253 9.497 37.54 58.547

Table 4: Optimal Solution

95% confidence interval
n iter obj lower upper total % CPU

lower of obj (min)
+upper

100 63 188348.7 153.0 344.4 497.4 0.26 8.3
200 72 188390.9 144.8 161.8 306.6 0.16 11.4
300 76 188344.9 100.5 180.2 280.7 0.15 13.8
400 84 188328.4 79.9 153.7 233.5 0.12 17.9
500 69 188304.0 78.0 131.1 209.0 0.11 15.8
600 69 188351.8 75.1 121.2 196.3 0.10 17.3
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Figure 1. Hypercubes of dimension n < 4
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Figure 3. Efficiency versus sample size
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